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Introduction

▶ We have focused on cross-sectional data, which include observations from a population at a point in time.

▶ In this part, we discuss panel data, where we have observations for each unit i (say a person or state) across
multiple periods t.

▶ The information at the time dimension can help us deal with certain types of unobserved confounding variables.

▶ We will discuss how the regression techniques can exploit the advantage of panel data.
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Outline

1. Basic Panel Data Models

2. Difference-in-Differences
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Union Memberships and Wages

▶ One of the oldest questions in labor economics is the relationship between union membership and wages.
• Do workers whose wages are set by collective bargaining earn more because of this?
• Or would they earn more anyway, perhaps because they are more experienced or skilled?

▶ Suppose we observe a group of workers’ union memberships (xit ) and wages (yit ) over time. i = 1,2, · · · ,N and
t = 1,2, · · · ,T .

▶ We wish to estimate a population model:
yit = α +βxit +uit .

▶ We can regress yit on xit . However, we may not be convinced that the regression coefficient captures the causal
effect of union membership on wages (β ). The union membership may be correlated with unobserved/unmeasurable
factors that also determine wages.

E(uit | xit) ̸= 0.
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Fixed Effects

▶ It is possible to address this issue if
E(uit | xit) = λi is constant.

That is, conditional on union membership, the effect of the unobserved determinant on wages is fixed (or time
invariant) for an individual. λi is thus said to be an individual fixed effect.

▶ The population model is written as
yit = α +βxit +λi + vit ,

where vit = uit −λi satisfies E(vit | xit ,λi) = 0. This is a fixed effects model.
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Fixed Effects Model

▶ Note that
yit = α +βxit +λi + vit

has the individual specific intercept αi ≡ α +λi and the common slope β .

▶ The model can be written as
yit = βxit +∑

j
α jDi j + vit ,

where Di j is a dummy variable that equals 1 if i = j and 0 otherwise.

▶ β can be consistently estimated by an OLS regression of yit on xit and {Di j}. The estimator β̂FE is said to be the
fixed effects estimator.

▶ Note that the fixed effects model can be estimated due to the panel data structure: an individual i is observed at
multiple time points.
• In consider cross-sectional data (T = 1), xi1 is perfectly collinear with {Di j}.
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Within Estimator

▶ Besides directly implementing OLS, there is another way to estimate

yit = αi +βxit + vit .

▶ Given i, take the average of the above equation over time t = 1,2, · · · ,T to get a cross-sectional equation:

ȳi = αi +β x̄i + v̄i.

Take the difference between the two equations:

yit − ȳi = β (xit − x̄i)+(vit − v̄i).

Here, αi is eliminated. This model relates the deviation of yit from the mean outcome ȳi to the deviation of xit from
the mean treatment x̄i. It limits the comparison to the same individual.

▶ β can be consistently estimated by an OLS regression of yit − ȳi on xit − x̄i. Since only within-individual variation
is used, the estimator is called a within estimator, denoted by β̂WI .
• Variables without variation over time would be dropped in a fixed effects model.

▶ In fact, β̂WI = β̂FE . Most software uses this fact to calculate β̂FE , which avoids creating and adding many dummies.
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First Difference Estimator

▶ We can take the first difference of population models between t and t −1:

yit = αi +βxit + vit

yi,t−1 = αi +βxi,t−1 + vi,t−1

⇒ yit − yi,t−1 = β (xit − xi,t−1)+(vit − vi,t−1)

∆yit = β∆xit +∆vit .

Here, αi is also eliminated.

▶ β can be consistently estimated by an OLS regression. β̂FD is the first difference estimator.

▶ When T = 2, β̂FD = β̂WI = β̂FE .
• yi2 − ȳi = yi2 − yi1+yi2

2 = 1
2 (yi2 − yi1).
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Extension

▶ Multi-way fixed effects model: e.g.,
yit = αi +δt +βxit + εit .

Time fixed effects δt control for variables that are constant across units but evolve over time.

▶ Fixed effects models can be applied even in non-panel data. The idea of fixed effects is to leverage within variation.
• In Dale and Krueger (2002), they control for dummies of application/application results, essentially fixed effects, so that

they can compare students who have the same applications/admissions but choose to attend more or less selective colleges.

▶ Statistical inference needs to use clustered robust standard errors to control for likely time series correlation in the
error term.
• Clustering by individual assumes independence across individuals.
• Clustering by group assumes independence across groups of individuals.
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Outline

1. Basic Panel Data Models

2. Difference-in-Differences
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Motivating Example: Card and Krueger (1994)

▶ What is the effect of minimum wage on employment?
• Theoretically, in a competitive market, raising the minimum wage moves the equilibrium point up on the downward sloping

labor demand curve, thus reducing employment.

▶ Card and Krueger (1994) study this question, exploiting a dramatic change in the New Jersey state minimum wage.

▶ On April 1, 1992, NJ raised the state minimum from $4.25 to $5.05 per hour.

▶ Card and Krueger (1994) collected data on employment at fast food restaurants in New Jersey in February 1992 and
again in November 1992.
• Fast-food restaurants are a leading employer of low-wage workers

▶ Could we simply compare average employment before and after the minimum wage change? Would the difference
tell us the causal effect?

Maybe not. If there were unobserved employment trends in the fast food industry, then the post-pre difference could
in part reflect such unobserved trends.
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Controlling for Unobserved Trends

▶ To control for unobserved trends, Card and Krueger (1994) used data on employment at fast food restaurants in
Eastern Pennsylvania. During the period, the minimum wage in Pennsylvania stayed at $4.25.

▶ The idea is that Eastern PA restaurants can provide a good proxy for employment trends that are not due to the
minimum wage change.

▶ More formally, consider a potential outcome framework.

Y1ist = employment at restaurant i in state s and time t if the state minimum wage is high.

Y0ist = employment at restaurant i in state s and time t if the state minimum wage is low.
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Controlling for Unobserved Trends (Cont’d)

▶ The employment change in NJ:

∆NJ ≡ E(Yist | s = NJ, t = Nov)−E(Yist | s = NJ, t = Feb)

= E(Y1ist | s = NJ, t = Nov)−E(Y0ist | s = NJ, t = Feb)

= E(Y1ist | s = NJ, t = Nov)−E(Y0ist | s = NJ, t = Nov)︸ ︷︷ ︸
treatment effect

+E(Y0ist | s = NJ, t = Nov)−E(Y0ist | s = NJ, t = Feb)︸ ︷︷ ︸
bias

.

As expected, ∆NJ contains the treatment effect and a term for unobserved trends. The treatment effect is an average treatment
effect on the treated (ATT):

AT T = E(Y1ist | s = NJ, t = Nov)−E(Y0ist | s = NJ, t = Nov).

▶ Similarly, the employment change in PA:

∆PA ≡ E(Yist | s = PA, t = Nov)−E(Yist | s = PA, t = Feb)

= E(Y0ist | s = PA, t = Nov)−E(Y0ist | s = PA, t = Feb)

It only involves unobserved trends.
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Difference-in-Differences

▶ Assume

E(Y0ist | s = NJ, t = Nov)−E(Y0ist | s = NJ, t = Feb) = E(Y0ist | s = PA, t = Nov)−E(Y0ist | s = PA, t = Feb),

i.e., in the absence of the minimum wage increase, NJ restaurants would have had the same employment trends as
PA restaurants. This is often referred to as a parallel trends assumption.

▶ If the parallel trends assumption holds,
∆NJ −∆PA = AT T

identifies the causal effect of the minimum wage increase on employment.

▶ This approach is called difference-in-differences (DiD). It essentially compares the evolution of the outcome
between treatment and control groups (here, NJ vs. PA); the control group helps with modeling the counterfactual
trends.
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DiD Intuition
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Card and Krueger (1994) Results

▶ No evidence that the minimum wage reduced employment!
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DiD Regression

▶ We do not have to compute averages manually. The DiD estimand is a function of conditional expectations. We can
use regression to “automate” calculation.

▶ Parallel trends assumption: E(Y0ist | s, t) = αs +δt .

▶ Let Ds be a dummy that equals 1 for the treatment state (NJ). Postt is a dummy that equals 1 if t is after the policy
change (after April 1992).

Yist = (Ds ×Postt)Y1ist +(1−Ds ×Postt)Y0ist

= (Y1ist −Y0ist) · (Ds ×Postt)+Y0ist

= (Y1ist −Y0ist) · (Ds ×Postt)+αs +δt +uist ,

where uist = Y0ist − (αt +δt), and E(uist | s, t) = 0 under parallel trends.

E(Yist | s, t) = E[(Y1ist −Y0ist) · (Ds ×Postt) | s, t]+αs +δt .
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DiD Regression (Cont’d)
▶ We can set up a regression

Yist = αs +δt +β (Ds ×Postt)+ εist .

This is a fixed effects model. It can be estimated by OLS.

▶ Claim: Regression coefficient β identifies ATT under parallel trends.

▶ Why? The regression above models the CEF as

E(Yist | s = NJ, t = Nov) = αNJ +δNov +β

E(Yist | s = NJ, t = Feb) = αNJ +δFeb

E(Yist | s = PA, t = Nov) = αPA +δNov

E(Yist | s = PA, t = Feb) = αPA +δFeb.

Thus,

β = [E(Yist | s = NJ, t = Nov)−E(Yist | s = NJ, t = Feb)]

− [E(Yist | s = PA, t = Nov)−E(Yist | s = PA, t = Feb)]

= AT T. (by parallel trends)

Estimator:
β̂ = (ȲNJ,Nov − ȲNJ,Feb)− (ȲPA,Nov − ȲPA,Feb).
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DiD with Multiple Periods

▶ Card and Krueger (1994) have 2 periods. Often we have more than 2 periods for a DiD analysis.

▶ We can still estimate
Yit = αi +δt +β (Di ×Postt)+ εit ,

and coefficient β gives the ATT for the entire post-treatment period.

▶ But with more periods, we can do more:
• We can test whether the parallel trends assumption appears to hold prior to treatment.
• We can analyze how the ATT changes over time.

▶ How do we do this?
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DiD with Multiple Periods (Cont’d)

▶ Suppose that we have periods t =−T , · · · , T̄ . Treated units begin getting treatment at period 0.

▶ For each period s ̸= 0, we can estimate a 2-period DiD between period s and period -1 (the period just ahead of
treatment):

β̂s = (Ȳ1s − Ȳ1,−1)︸ ︷︷ ︸
Diff for treatment group

− (Ȳ0s − Ȳ0,−1)︸ ︷︷ ︸
Diff for control group

,

where Ȳdt is the average for treatment d in period t.

▶ Conveniently, β̂s’s are equal to the OLS estimates of the regression

Yit = αt +δt + ∑
s̸=−1

Di ×1[t = s]×βs + εit .

This is often called an event study model or a dynamic model.

βs (s ≥ 0) identifies ATT at post-treatment period s, under parallel trends.

βs (s < 0) identifies the difference in trends between treatment and control groups in pre-periods. Under parallel
trends, we expect them to be 0. (pre-trends test)
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Example - Medicaid Expansion

▶ The Affordable Care Act (ACA, aka Obamacare) expanded Medicaid coverage to people with income up to 138% of
the federal poverty line.

▶ Medicaid expansion went into effect in 2014.

▶ By 2015, 24 states had expanded Medicaid (more have done so since).

▶ Carey et al. (2020) study the impacts of Medicaid expansion using a DiD design comparing early-adopting states to
non-adopters. They use data for 2008–2015.
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Carey et al. (2020)
▶ A slightly simplified version of their regression specification is

Yits = φt +λs + ∑
r ̸=−1

Di ×1[t = 2014+ r]×βr + εist

where Yist is outcome for person i in year t in state s, and Di = 1 if in an expansion state.

▶ Results show similar “pre-trends” but negative effects after treatment.
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Some Caution about Parallel Trends

▶ DiD relies on the parallel trends assumption, which allows for selection bias but requires it to be stable over time.
This rules out time-varying confounding factors.

▶ Often we will be worried about time-varying confounds—e.g., in the Medicaid example, macro-economic factors
might be different across states.

▶ The parallel trends assumption is fundamentally a functional formal assumption: it is assumed that

E(Yit | i, t) = αi +δt .

To make parallel trends more plausible, we can extend it to allow for more complex functional forms:
• Time-varying variables: E(Yit | i, t) = αi +δt +X′

it γ;
• Group-specific linear trends: E(Yit | i, t) = αi +δt +φregion(i)× t +X′

it γ;
• Heterogeneous dynamics: E(Yit | i, t) = αi +φregion(i)×δt +X′

it γ .
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Some Caution about Parallel Trends (Cont’d)

▶ Testing for pre-treatment differences (“pre-trends”) can help increase our confidence in the research design. But
they’re not perfect. Why?

1. Just because trends were parallel beforehand doesn’t mean that they would continue to be afterwards.
• E.g., there is another policy change that has exactly the same timing as the treatment policy of interest. The DiD estimand

won’t be able to separate the effects of the two policies.
• We may use institutional knowledge to rule out confounding policies or determine if such policies could affect the outcome

of interest.

2. Often our estimates of pre-trends are noisy so we’re not sure whether they’re actually zero or not.
• Recall when we fail to reject H0 : βpre = 0, it doesn’t mean we “accept” that βpre is a true zero.
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Testing Pre-Trends

▶ In addition to looking at the point estimates of pre-trends, it’s important to consider what the CIs rule out.

▶ A good rule of thumb for whether a plot is convincing is whether you can draw a smooth line through all the
confidence intervals.

(a) Are you convinced there’s an effect here? (b) Maybe not!
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DiD Extension I: Non-Binary Treatment

▶ We have focused on binary treatment Di.

▶ The DiD analysis can be applied when treatment is measured with a continuous variable Ti, which captures the
intensity/dosage of a treatment.
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Example: Finkelstein (2007)

▶ Medicare is a US government program introduced in 1965 to provide health insurance to all the elderly. However,
the impact of Medicare can vary due to differences in the uninsured rate.

▶ A stylized version of Finkelstein (2007)’s regression:

log(yi jt) = α j +δt +
1975

∑
k=1948

Tz( j)×1{t = k}+ εi jt .

yi jt is the outcome of hospital i in county j and year t. Tz( j) is the uninsured rate among the elderly in 1963—a
higher value should relate to a greater influence of Medicare.
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DiD Extension II: Staggered Timing
▶ We have focused on the treatment that is implemented at the same time for all treated units. But the timing may vary,

e.g., states pass a policy in different years.

▶ The DiD analysis can be applied in this setting by running OLS regressions like:

Yit = αi +δt +βDit + εit

where Dit = 1 if unit i is treated in period t.
• This incorporates the classical case that we have discussed (define Dit = Di ×Postt ).
• Under parallel trends, β ≈ AT T .

▶ Event study model:
Yit = αi +δt + ∑

s ̸=−1
βsDs

it + εit ,

where Ds
it = 1 if i is s periods relative to the start period of its treatment; = 0 if never treated.

▶ (Not required.) Staggered DiD involves two types of comparisons: treated vs. control; newly treated vs. not yet
treated; and newly treated vs. already treated.
• In recent years, a growing econometric literature studies how to use reasonable comparisons in staggered DiD (e.g., see a

review by Roth et al., 2023).
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Example: Brynjolfsson et al. (2025)

▶ Brynjolfsson et al. (2025) studies how the generative AI–based conversational assistant affects customer-support
agents’ productivity (measured by # resolutions per hour).

▶ They estimate:
yit = αi +δt +βAIit +X′

itγ + εit ,

where AIit = 1 if AI has been activated for agent i at time t.
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DiD Extension III: Non-Panel Data

▶ A DiD analysis doesn’t require panel data.

▶ The key is that we need to observe outcomes for treated and control groups both before and after the treatment, so
that we can compare changes over time between the two groups.
• Repeated cross-sectional data can suffice, or data with information relevant to the timing of the treatment.
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Example: Duflo (2001)
▶ Duflo (2001) studies the impact of Indonesia’s large primary school construction program in 1974.

• The program constructed more schools in some regions but less in others.
• The program should benefit students younger than 12 in 1974, who haven’t completed primary school.

▶ She uses the 1995 intercensal survey of Indonesia (a cross section). But she can observe an individual’s birth year and birth
region. She estimates

Si jt = α j +δt + ∑
k ̸=24

βk(Pj ×1{t −1974 = j})+ controls+ εi jt ,

where Si jt is education of individual i born in region j and in year t. Pj is the number of schools constructed in region j.
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DiD Summary
▶ DiD checklist:

• Does your dataset allow you to run a DiD?
• What assumption do you need for a causal interpretation?
• How do you justify your assumption?

▶ DiD has become one of the most popular methods in modern economics (and perhaps even social sciences). Use it
with caution!

Source: Goldsmith-Pinkham (2024)
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