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Overview

▶ In this lecture, we formally define causality, which involves comparison to a counterfactual scenario.

▶ We will discuss causality in linear regressions. As it turns out, simple linear regression results cannot be interpreted
as causal effects, unless additional assumptions are imposed.

▶ Then, we discuss the instrumental variable (IV) strategy, an approach economists use to infer causality. We will
discuss more causal inference methods in future lectures.
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Outline
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Potential Outcomes Framework

▶ A simple framework to discuss causality.
• Also called the Rubin Causal Model, named after statistician Donald Rubin.

▶ Consider a binary treatment Ti ∈ {0,1} and and an outcome Yi.
• Think of Ti = holding a college degree, and Yi = earnings.

▶ An individual, indexed by i, has two potential outcomes:
• Outcome under treatment, i.e., when Ti = 1: Yi1;
• Outcome under control (non-treatment), i.e., when Ti = 0: Yi0.

▶ E.g., Yi1 is the income individual i will get if they get a college degree.

Yi0 is the wage individual i will get if they do not get a college degree.

▶ Note that Yi = TiYi1 +(1−Ti)Yi0. (Why?)
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Causal Effect

▶ What is the causal effect of the treatment on the outcome for individual i?

Yi1 −Yi0

▶ This is the difference in outcome for individual i if they get treated versus if they do not get treated.
• E.g., difference in income with a college degree versus not.

▶ Can we compute this treatment effect?

▶ We can’t! For a given individual i, we never observe both of Yi1 and Yi0 simultaneously.
• If i has a college degree, we observe Yi1 but we can’t observe the counterfactual Yi0.
• Likewise, if i doesn’t have a college degree, we observe Yi0 but we can’t observe the counterfactual Yi1.

▶ In reality, we are unable to do comparisons of Y for different hypothetical values of T —the thought experiment that
defines causal effects.
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Selection Bias

▶ Why don’t we just compare a treated individual to a control individual?
• I.e., compare an individual with a college degree to one without.

▶ Then, we compare individual i in treatment (Ti = 1) to individual j in control (Tj = 0):

Yi1 −Y j0.

Note that both Yi1 and Y j0 can be observed.

▶ Can we get the causal effect from this? Not necessarily. Why?
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Selection Bias (Cont’d)

▶ We can rewrite Yi1 −Y j0 as follows:
Yi1 −Y j0 = Yi1 −Yi0 +Yi0 −Y j0

▶ The first component, Yi1 −Yi0, is the treatment effect for individual i (what we want).

▶ However, there is a second term, Yi0 −Y j0, which is the difference in potential outcomes under control between i and
j. This term is called selection bias.

▶ Therefore, in general, Yi1 −Y j0 is not equal to the causal effect due to the selection bias.
• Positive selection ⇒ upward bias, Yi1 −Yj0 > Yi1 −Yi0.
• Negative selection ⇒ downward bias, Yi1 −Yj0 < Yi1 −Yi0.

▶ Whether the selection bias is positive or negative is case-dependent.
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Average Treatment Effect

▶ We usually want to estimate the average treatment effect (ATE):

AT E = E(Yi1 −Yi0).

▶ ATE is over the entire population. There are other versions of average effects.

CAT E(x) = E(Yi1 −Yi0 | Xi = x)

where Xi is some characteristic. CAT E(x) is the average treatment effect among those with Xi = x.

▶ Estimating average effects also faces the challenge of selection bias
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Average Treatment Effect and Selection Bias

▶ AT E = E(Yi1 −Yi0). Because for all individuals, we only observe one of Yi1 and Yi0, not both, we can’t directly
compute ATE. But we can compute the mean difference between the treated and untreated.

E(Yi1 | Ti = 1)−E(Yi0 | Ti = 0)

where both terms are observable. In the above equation, substract and add E(Yi0 | Ti = 1):

E(Yi1 | Ti = 1)−E(Yi0 | Ti = 1)︸ ︷︷ ︸
=E(Yi1−Yi0|Ti=1)

+E(Yi0 | Ti = 1)−E(Yi0 | Ti = 0).

▶ E(Yi1 −Yi0 | Ti = 1): average treatment effect on the treated (ATT).
• Not exactly ATE. But it’s still a useful causal parameter—policy makers may care more about the impact on the population

targeted by an intervention.

▶ E(Yi0 | Ti = 1)−E(Yi0 | Ti = 0): selection bias—avg difference in Yi0 btw the treated and untreated.
• E.g., the avg difference in earnings btw college grads who, hypothetically, did not obtain a degree and individuals who

never had a college degree.
• Positive (negative) selection would lead to upward (downward) bias for ATT.
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Average Treatment Effect and Selection Bias (Cont’d)

▶ A sufficient condition to purge selection bias is random assignment of the treatment.

Ti ⊥⊥ Yi1,Yi0.

⇒ E(Yi0 | Ti = 1)−E(Yi0 | Ti = 0) = E(Yi0)−E(Yi0) = 0. (In fact, only Ti ⊥⊥ Yi0 is used here, but randomization
should break Ti’s dependence on both potential outcomes.)

E.g., (unrealistically) college degrees are randomly awarded.

▶ At least, need an assumption such that individuals would have similar average potential outcomes if they were not
treated:

E(Yi0 | Ti = 1) = E(Yi0 | Ti = 0)

▶ The assumption that purges selection bias is called “identifying assumption.”
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Causality and Regression

▶ The identifying assumption under the potential outcomes model coincides with the assumption we need for
consistent OLS regression.

▶ Note

Yi = TiYi1 +(1−Ti)Yi0

= (Yi1 −Yi0)Ti +Yi0

= E(Yi0)+(Yi1 −Yi0)Ti +Yi0 −E(Yi0)

▶ For simplicity, let Yi1 −Yi0 = β , i.e., constant treatment effect (this assumption is not necessary). Then,

Yi = α +βTi +ui

where α = E(Yi0), β = Yi1 −Yi0, and ui = Yi0 −E(Yi0).
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Causality and Regression (Cont’d)

▶ If we run an OLS regression of Yi on Ti in the population,

βOLS =
Cov(Ti,Yi)

Var(Ti)
= β︸︷︷︸

treatment effect

+
Cov(Ti,ui)

Var(Ti)︸ ︷︷ ︸
selection bias

.

▶ OLS identifies the treatment effect, i.e., βOLS = β when Cov(Ti,ui) = 0.

▶ Note ui = Yi0 −E(Yi0), a random assignment assumption (Ti ⊥⊥ Yi1,Yi0) suffices.

▶ Take-away: We can always run regressions so long as data are available, but interpreting a coefficient as a
parameter of interest requires additional assumptions.

12



Conditional Independence Assumption
▶ The conditional independence assumption (CIA; also called conditional unconfoundedness):

Di ⊥⊥ Yi1,Yi0 | Xi = x.

Xi: covariates/control variables/confounders.

▶ How does this help us?

E(Yi | Di = 1,Xi = x)−E(Yi | Di = 0,Xi = x)
= E(Yi1 | Di = 1,Xi = x)−E(Yi0 | Di = 0,Xi = x)
= E(Yi1 | Di = 1,Xi = x)−E(Yi0 | Di = 1,Xi = x)

+E(Yi0 | Di = 1,Xi = x)−E(Yi0 | Di = 0,Xi = x)
=CAT T (x)+ selection bias

CIA implies that
selection bias = E(Yi0 |���Di = 1,Xi = x)−E(Yi0 |���Di = 0,Xi = x) = 0.

In addition, CIA implies:

CAT T (x) = E(Yi1 |���Di = 1,Xi = x)−E(Yi0 |���Di = 0,Xi = x) =CAT E(x).
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CIA and Regression
▶ We have shown that with CIA, CAT E(x) can be identified by observable conditional means:

CAT E(x) = E(Yi | Di = 1,Xi = x)−E(Yi | Di = 0,Xi = x).

▶ Common to approximate the CEF linearly, as

E[Yi|Di,Xi]≈ Diβ +X′
iγγγ

▶ Then CIA implies that CAT E(x)≈ β .

Doesn’t depend on x, so also have β ≈ AT E.

▶ So if we estimate the multivariate regression

Yi = Diβ +X′
iγγγ + εi,

we can interpret β̂ββ as an estimate of the ATE (under the CIA).

▶ This can be extended to multivalued and continuous treatment, where β̂ββ can be interpreted as an estimate of the
average marginal effect of the treatment.
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Choice of Covairates

▶ Invoking the CIA was a popular approach to causality.

▶ For the CIA to be valid, the choice of covariates is key. Some ideas:
• Economic theory;
• Institutional knowledge.

▶ It is important to validate the choice of covariates, i.e., conditioning upon them can purge selection bias.

▶ After fixing a set of baseline, most important controls, researchers will often show that their results are robust to
controlling for a larger set of covariates to address various concerns.

▶ Limitation of CIA: We can only control for observable variables. The estimator can still be biased if there are
important unobservable factors that cannot be proxied by observables.

Modern causal inference seeks to design “good comparisons” to tease out the influence of unobservables, without
relying on the “correct” choice of covariates.
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Solutions to Selection Bias

▶ Simply assuming random assignment or zero selection bias won’t give us convincing results.

▶ What can be done with selection bias?

1. Randomized controlled trials (RCTs): assignment is artificially randomized.
• RCTs are costly. Moreover, many treatments cannot be randomized for feasibility and ethical reasons. E.g., it won’t be

possible and appropriate to randomly assign democracy to a country.

2. Control for selection: include many variables in a regression; hopefully, conditional upon them, the treatment is as
good as randomly assigned.
• In practice, not very promising because we rarely know what variables determine the assignment process.

3. Natural experiments: look for “events” that exogenously change the treatment.
• This has become the state-of-the-art approach in empirical economics.
• We will cover many methods in this course. Next, we start with instrumental variables.
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Endogeneity/Selection Bias

▶ Y = α +βX +u where Cov(X ,u) ̸= 0. Regression doesn’t identify the causal effect β .

X Y

u

β
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Idea of IV

▶ Cov(X ,u) ̸= 0.

▶ However, Z can shock X without shifting u, and it doesn’t directly affect Y . Z is an instrument for X .

X Y

u

Z
βπ
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Basic IV Model

▶ Suppose Yi = earnings, Xi = education, and ui = unobserved ability.

▶ Consider a constant-effect population model (often called the structural equation):

Yi = α +βXi +ui.

Cov(Xi,ui) ̸= 0, thus regression coefficient βOLS =
Cov(Xi,Yi)

Var(Xi)
̸= β .

▶ Suppose we observe the outcome of a college scholarship lottery, Zi.
• E.g., Zi = 1 if i is a scholarship lottery winner, Zi = 0 otherwise.

▶ Assume that Zi only affects Yi through its effect on Xi. Zi is said to be an instrument for Xi. Randomization implies
Cov(Zi,ui) = 0.
• If Zi has a direct effect on Yi, ui = γZi + vi. Randomization implies Cov(Zi,vi) = 0 but it is possible Cov(Zi,ui) ̸= 0.

▶ How is this useful?
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IV Mechanics

▶ By Cov(Zi,ui) = 0,

Cov(Zi,Yi −α −βXi) = 0

βCov(Zi,Xi) =Cov(Zi,Yi)

β =
Cov(Zi,Yi)

Cov(Zi,Xi)
.

Thus, β is identified by Cov(Zi,Yi)
Cov(Zi,Xi)

.

▶
Cov(Zi,Yi)
Cov(Zi,Xi)

is said to be the instrumental variable estimand, denoted by βIV.
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IV Mechanics (Cont’d)
▶ The IV estimand can be written as

βIV =
Cov(Zi,Yi)/Var(Zi)

Cov(Zi,Xi)/Var(Zi)
=

ρ

π
.

ρ and π are coefficients from regressions:

Yi = κ +ρZi +νi (reduced-form regression),

Xi = µ +πZi +ηi (first-stage regression).

• Note that ρ and π identify causal effects if Zi is as-good-as-randomly assigned.
• ρ identifies the intent-to-treat (ITT) effect—the effect of an assignment regardless of actual treatment take-up.

▶ IV divides the “reduced-form effect” of the instrument on the outcome by the “first-stage effect” of the instrument
on the treatment.
• Intuitively, ∆Z → ∆X → ∆Y .
• Effect of Z on Y (ρ) = Effect of Z on X (π) × Effect of X on Y (β ).

▶ If Zi is binary, βIV reduces to

βIV =
ρ

π
=

E(Yi | Zi = 1)−E(Yi | Zi = 0)
E(Xi | Zi = 1)−E(Xi | Zi = 0)

.
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Validity of the IV Estimand

▶ When is the IV estimand βIV =
Cov(Zi,Yi)
Cov(Zi,Xi)

valid, i.e., βIV = β?

1 (Relevance) Cov(Zi,Xi) ̸= 0.
• Instrument Zi is predictive of treatment Xi.
• This implies the first-stage regression Xi = µ +πZi +ηi, π ̸= 0.
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Validity of the IV Estimand (Cont’d)

▶ The key “validity” condition Cov(Zi,ui) = 0 (so that βIV = β ) requires two distinct assumptions. For illustration,
write ui in the structural model as ui = γZi + vi.

2 (Independence) Individuals with higher/lower potential outcomes (i.e., hypothetical values of Yi conditional upon
Xi and Zi) do not face systematically different values of Zi.
• Potential outcome Yi(x,z) = α +βx+ γz+ vi. Independence means Zi ⊥⊥ vi.

3 (Exclusion Restriction) Zi does not directly affect Yi through Xi.
• This means γ = 0. That said, the structural equation “correctly” excludes Zi; Zi does not hide in ui.

▶ Independence + Exclusion Restriction = Exogeneity. Zi affects Yi only through Xi.

▶ Confusingly, some old-school econometrics texts sometimes refer to Cov(Zi,ui) = 0 as the “exclusion restriction.”
We shall distinguish them.
• We may adopt this terminology as it has been widely accepted.
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Valid IV Graph

▶ We can re-present Cov(Zi,ui) = 0 graphically.

X Y

u

Z
βπ
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Independence Violated

▶ Some unobserved factors in u can also affect Z.

X Y

u

Z
βπ
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Exclusion Restriction Violated

▶ Z directly affects Y .

X Y

u

Z
βπ
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IV Estimation
▶ Use the MoM to estimate βIV =

Cov(Zi,Yi)
Cov(Zi,Xi)

: replacing population moments with sample means

β̂IV =
∑i(Zi − Z̄)(Yi − Ȳ )
∑i(Zi − Z̄)(Xi − X̄i)

=

∑i(Zi−Z̄)(Yi−Ȳ )
∑i(Zi−Z̄i)2

∑i(Zi−Z̄)(Xi−X̄)

∑i(Zi−Z̄i)2

=
ρ̂

π̂
.

ρ̂ and π̂ are from OLS reduced-form and first-stage regressions:

Yi = κ̂ + ρ̂Zi + ν̂i (reduced-form regression),

Xi = µ̂ + π̂Zi + η̂i (first-stage regression).

▶ β̂IV can also be derived from regression
Yi = α +β X̂i + εi,

where X̂i is the predicted value of Xi for the first-stage regression. The above regression is often called the
“second-stage regression,” and the IV estimator β̂IV is also called the two-stage least squares (2SLS) estimator.

▶ However, in Stata, one should never literally run two OLS regressions to obtain β̂IV. The “second stage” wouldn’t
take into account the uncertainty of predicting X̂i, so the SEs would be incorrect.
• ivreg2 in Stata does the SE adjustment automatically: ivreg2 y (x = z).
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Evaluating IV Validity

1 (Relevance) Cov(Zi,Xi) ̸= 0.
• It implies the first-stage regression Xi = µ +πZi +ηi, π ̸= 0.
• We can test H0 : π = 0. If π̂ is highly significant, that suggests a strong IV. A rule of thumb is that the F-stat should be at

least 10 (Staiger and Stock, 1997).
• An economic argument for relevance is appreciated.

2 (Independence) Individuals with higher/lower potential outcomes do not face systematically different values of Zi.
• This is untestable because we do not observe potential outcomes.
• We may leverage institutional knowledge: Is the assignment of the IV random or near random condition upon some

observable characteristics?
• We may examine correlations between the IV and some observable determinants of the outcome (balance test).

3 (Exclusion Restriction) Zi only affects Yi through Xi.
• This is also untestable, because alternative channels, if any, are in ui, which we cannot observe.
• Economic theory can help us think about whether an alternative channel is possible.
• We can test if Zi has an impact on variables that measure alternative channels. This can increase our confidence in the IV,

however, we cannot exhaust/measure all possibilities. A strong economic argument is necessary.
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When Treatment Effects Are Heterogeneous...

▶ We have assumed the treatment effects are homogeneous. That is, we consider a population model:

Yi = α +βXi +ui

where β is constant.

▶ In this framework, by construction, IV identifies a causal effect that applies to everyone, though perhaps only a
small group of individuals react to the IV.

▶ We will allow for effect heterogeneity, and show that under certain assumptions, IV lets us identify a local average
treatment effect (LATE)—an average effect for compliers, i.e., people who are induced by the IV to take up the
treatment.
• Unlike in the constant-effect model, now the IV estimand is a “local” effect in the sense that it doesn’t tell us about the

treatment effect for people whose treatment status is not affected by the IV.

▶ For simplicity, we consider binary treatment Di ∈ {0,1} and binary IV Zi ∈ {0,1}.
• E.g, Di = indicator of high/low education; Zi = indicator of winning the scholarship lottery.
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Four Types of People

▶ Introduce potential treatments: Di(z), a function of the IV value (z); analogous to the potential outcomes.
• Di(1) is treatment status if Zi = 1 (win the lottery).
• Di(0) is treatment status if Zi = 0 (lost the lottery).

▶ Always takers: people who will have high educational attainment regardless of the outcome of the lottery. Always
takers have Di(1) = Di(0) = 1.

▶ Never takers: people who will never have high educational attainment regardless of the lottery. Never takers have
Di(1) = Di(0) = 0.

▶ Compliers: people who have high educational attainment only if they win the lottery. Compliers have Di(1) = 1
and Di(0) = 0.

▶ Defiers: people who have high educational attainment only if they lose the lottery. Defiers have Di(1) = 0 and
Di(0) = 1.
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Potential Outcomes

▶ Potential outcomes: Yi(d,z), which is a function of hypothetical values of Di and Zi, d and z respectively.

▶ For notational simplicity, a general expression for Yi(d,z) is

Yi(d,z) = βid + γiz+ui,

where βi and γi can be non-constant.
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Assumptions

1. (Relevance) IV should be predictive of Di. Cov(Zi,Di) ̸= 0.
• In the language of potential treatments, Di(1) ̸= Di(0).

2. (Independence) Individuals with higher/lower potential outcomes/treatments do not face systematically different
values of Zi. Zi ⊥⊥ Yi(d,z) for all (d,z) and Zi ⊥⊥ Di(z) for all z.
• Given Yi(d,z) = βid + γiz+ui, this means Zi ⊥⊥ βi,γi,ui,Di(1),Di(0).

3. (Exclusion Restriction) Zi only affects Yi through Xi.
• Given Yi(d,z) = βid + γiz+ui, this means γi = 0.
• Yi(d,z) is not a function of z and reduces to Yi(d) = βid +ui.

4. [New] (Monotonicity) There are no defiers, i.e., Di(1)≥ Di(0) for all i.
• IV shifts treatment status in a single direction.
• This is untestable because we couldn’t observe both Di(1) and Di(0). It needs to hold for all individuals, but we may look

at the signs of first-stage effects by subgroup.
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LATE Theorem

▶ Theorem: If the four assumptions hold, then

βIV = E(βi | i ∈ Compliers) = E[βi | Di(1) = 1,Di(0) = 0]≡ LATE.

(This result won Joshua Angrist and Guido Imbens the 2021 Nobel Prize in Economics!)

▶ Proof: (You won’t be responsible for this.)

βIV =
ρ

π
=

E(Yi | Zi = 1)−E(Yi | Zi = 0)
E(Di | Zi = 1)−E(Di | Zi = 0)

.

First-stage effect π:

π
A2
= E[Di(1)−Di(0)]

= 1×Pr[Di(1)> Di(0)]+(−1)×Pr[Di(1)> Di(0)]

= Pr(Compliers)−Pr(Defiers)
A4
= Pr(Compliers).
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LATE Theorem Proof

▶ Reduced-form (ITT) effect ρ:

ρ = E[βiDi(1)+ui | Zi = 1]−E[βiDi(0)+ui | Zi = 0]
A2
= E[βi(Di(1)−Di(0))]

= Pr[Di(1)> Di(0)]×E[βi | Di(1)> Di(0)]+Pr[Di(1)< Di(0)]×E[−βi | Di(1)< Di(0)]
A4
= Pr[Di(1)> Di(0)]×E[βi | Di(1)> Di(0)]

= Pr(Compliers)×E[βi | Compliers].

▶ Taken together,
βIV =

ρ

π
= E[βi | Compliers].
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Is LATE more useful than ITT?

▶ Reduced-form (ITT) is always causal if independence holds.

▶ But to get LATE, we further need exclusion and monotonicity to hold.

▶ Why ever do IV? IV answers more interesting questions than ITT.
• Wage effects of education vs. of winning a scholarship lottery.

▶ And hopefully it’s more externally valid...
• Important to think about the scope of what IV can speak to...
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