ECON 3510: Poverty and Economic Development Lecture 10: Matching

Instructor: Weizheng Lai

Bowdoin College

Fall 2025

Conditional Independence Assumption (CIA)

▶ We have been using the following regression

$$Y_i = \beta D_i + \mathbf{X}_i' \boldsymbol{\gamma} + \varepsilon_i.$$

- \triangleright To interpret β as a causal effect, we need to assume:
 - (i) $D_i \perp \!\!\!\perp \varepsilon_i \mid \mathbf{X}_i$;
 - (ii) the linear relationship between Y_i and X_i is true.
- ▶ (ii) is often implicitly taken as granted. But it might be a strong assumption.
 - How do we know the correct form of X_i ? Linear, quadratic, cubic, log?
 - How much should we trust that X_i has constant effect γ across i?
- ▶ Ideally, we want to exploit the CIA to estimate causal effects without a strong functional assumption.
- **Fix: matching.** Basic idea: find comparable controls $(D_i = 0)$ for the treated $(D_i = 1)$ based upon \mathbf{X}_i .

Matching Basics

- ▶ Step 1: Decide covariates X.
 - Guided by economic theory.
- ▶ Step 2: Match treated and control observations with similar values of X.
 - How similar?
 - Exact matching: If X is binary or discrete, then it is possible to match observations with the same values.
 - Nearest matching: If X is continuous (so not possible to match exactly), can match the treated to a control with the closest value of X.
 - Radius matching: can also match treated i to control j, as long as $|\mathbf{X}_i \mathbf{X}_j| < r$, where radius/caliper r is chosen by the researcher.
 - With replacement or without replacement?
 - With replacement: After one time of matching, the control observation goes back to the pool for the next time of matching. Thus, it's
 possible for a control observation to be matched for multiple treated observations.
 - Either way is fine. With replacement may be preferred in small samples.
 - Thus, matching can be one-to-one or one-to-many. It's also likely that we can't find matches for some treated.
- ► Step 3: Estimate Causal Effects.
 - $\hat{\beta}_{\text{matching}} = \frac{1}{N_p} \sum_p (Y_p^T Y_p^C)$, where p indexes matched pairs, and N_p is the number of matched pairs.
 - Run linear regression using the matched sample: $Y_i = \alpha + \beta D_i + \varepsilon_i$.
 - Variants: (i) control for pair FEs; (ii) control for covariates.

540

Remarks

- ▶ Basic matching can be done in Stata by calipmatch and other commands.
- Matching deals with selection on observables (i.e., CIA is assumed). It can't address selection on observables.
- ▶ In fact, we can never be sure which covariates are correct ones to match on.
- ► The state-of-the-art implementation of matching is to use it for selecting comparable controls, and implement some quasi-experimental methods in the matched sample.
 - E.g., the parallel trends assumption for the DiD might be more plausible in a matched sample.
- ▶ Important to check the validity of matching. Are covariates you match on indeed balanced between treatment and control groups? What about untargeted covariates?

Propensity Score Matching

- Curse of Dimensionality: One problem with the basic matching method is that if there are many variables in X_i , it is difficult to find matches for all treated, yielding a matches sample that is too small to be useful.
 - But for a plausible CIA argument, we do want more variables in X_i .
- One solution: **Propensity Score Matching (PSM)**.
- Rather than matching on X_i , it's enough to match on the scalar **propensity score**

$$p(\mathbf{X}_i) = \Pr(D_i = 1 \mid \mathbf{X}_i).$$

- **Theorem:** $D_i \perp \!\!\!\perp \varepsilon_i \mid \mathbf{X}_i \text{ implies } D_i \perp \!\!\!\perp \varepsilon_i \mid p(\mathbf{X}_i).$
- Key Condition ("Overlap"): $0 < p(\mathbf{X}_i) < 1$.

Procedures

- ► Step 1: Decide covariates X.
- ▶ Step 2: Estimate propensity score $p(X_i)$.
 - Run a Probit regression

$$\Pr(D_i = 1 \mid \mathbf{X}_i) = \Phi(\mathbf{X}_i' \boldsymbol{\delta}),$$

where $\Phi(\cdot)$ is the cdf of N(0,1).

Obtain estimated propensity score

$$\widehat{p(\mathbf{X}_i)} = \Phi(\mathbf{X}_i'\hat{\boldsymbol{\delta}}).$$

- ▶ Step 3: Match treated and control observations based upon $\widehat{p(\mathbf{X}_i)}$.
 - Can do nearest matching or radius matching.
 - Blocking: block $\widehat{p(\mathbf{X}_i)}$ into several bins; treated and control observations in the same block are matched together.
- ► Step 4: Estimation.
 - Mean difference: $\hat{\beta}_{\mathrm{matching}} = \frac{1}{N_p} \sum_p (\bar{Y}_p^T \bar{Y}_p^C)$.
 - Regression with the matched sample: $Y_i = \alpha + \beta D_i + \varepsilon_i$.
 - Variants: (i) control for pair/block FEs; (ii) control for covariates.

200

Remarks

- ▶ PSM can be done in Stata by psmatch2.
- ▶ Again, PSM only addresses selection on observables, not selection on unobservables.
- Pros of matching:
 - Easy to tell what comparisons are used;
 - Does not rely on strong functional form assumptions.
- Cons of matching:
 - Low statistical power: samples are smaller;
 - Data greedy.